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Abstract. Precision distance-redshift observations can map out the recent expansion history of the
universe, including the present acceleration and the transition to matter dominated deceleration.
The proposed Supernova/Acceleration Probe (SNAP) will carry out observations determining the
components and equations of state of the energy density, providing insights into the cosmological
model, the nature of the accelerating dark energy, and potentially clues to fundamental high energy
physics theories and gravitation. This includes the ability to distinguish between various dynamical
scalar field models for the dark energy, as well as higher dimension and alternate gravity theories.
A new, advantageous parametrization for the study of dark energy to high redshift is also presented.

1. INTRODUCTION

Little else evokes the recent great advances in our abilities in cosmological observations
like the quest to explore the expansion history of the universe. This carries cosmology
well beyond “determining two numbers” – the present dimensionless density of matter
Ωm and the present deceleration parameter q0 of Sandage [1] – to seeking to reconstruct
the entire function a

�
t � representing the expansion history of the universe. In the previ-

ous case cosmologists sought only a local measure – the first two derivatives of the scale
factor a, evaluated at a single time t0 – while in the latter case we strive to map out the
function determining the global dynamics of the universe.

While many qualitative elements of cosmology follow merely from the form of the
metric, i.e. the kinematical cosmology (see Weinberg [2]), deeper understanding of
our universe requires knowledge of the dynamics, the quantitative role of gravitational
forces determining the scale factor evolution, a

�
t � . This echoes the flows of energy

between components, e.g. the epoch of radiation domination transitioning to that of
matter domination, and is a key element in the growth of density perturbations into
structure. Yet until recently the literature tended to consider only

H0 �
�
ȧ � a � 0 ; q0 ���

�
aä � ȧ2 � 0 � (1)

the Hubble constant and the deceleration parameter today.
Now a myriad of cosmological observational tests can probe the function a

�
t � more

fully, over much of the age of the universe (see Sandage [3], Linder [4, 5], Tegmark [6]).
All that is required is a probe capable, not just in theory but in practice, of observations
both precise and accurate enough. A number of promising methods are being developed,
but this article concentrates on the most advanced, the magnitude-redshift relation of
Type Ia supernovae.



The goal of mapping out the recent expansion history of the universe has several mo-
tivations. The thermal history of the universe, extending back through structure forma-
tion, matter-radiation decoupling, radiation thermalization, primordial nucleosynthesis,
etc. has taught us an enormous amount about both cosmology and particle physics. It
has spin offs in high energy physics, neutrino physics, gravitational physics, nuclear
physics, and so on (see, e.g., Kolb and Turner [7]). The recent expansion history of the
universe promises similarly fertile ground with the discovery of the current acceleration
of the expansion of the universe. This involves concepts of the late time role of high en-
ergy field theories in the form of possible quintessence, scalar-tensor gravitation, higher
dimension theories, brane worlds, etc.

Looking literally to the future, this accelerated expansion moreover has profound
implications for the fate of the universe, from the viability of string theory [8] to eternal
inflation and the heat death of the universe [9] to ideas on the cyclic nature of time [10].
The recent expansion history offers guidance on the fate of our universe plus physics at
the extremes: the form of high energy physics, physics at the smallest scales and in extra
dimensions, physics in the most distant past and asymptotic future.

Section 2 considers the use of supernova observations to obtain the magnitude-redshift
law out to z � 2 and how to relate this to the scale factor-time behavior a

�
t � . Section

3 presents specifics on the proposed Supernova/Acceleration Probe mission [11] and
its capabilities. Different parametrizations of the dynamics are investigated in Section
4, including extensions to nonstandard gravitation that alters the Friedmann equation
governing the expansion evolution. Section 5 considers constraints from other probes,
especially on the age of the universe and the Hubble constant.

We may look forward to future textbooks including pictures showing some form of
the reconstruction of the recent expansion history, à la Figure 5.

2. MAPPING THE EXPANSION HISTORY

First we consider the global description: the geometry of the universe and the form of
the spacetime metric that this imposes. Readers familiar with cosmology might wish to
skip this didacticism and proceed to either Eq. 2 or 6.

Precision measurements of the cosmic microwave background (CMB) radiation tem-
perature across the entire sky, as well as subsidiary experiments such as radio source
counts, galaxy counts, and background radiation surveys in other wavelength bands, in-
dicate our universe is very well modeled by an isotropic spacetime. Redshift surveys
such as the 2dF and Sloan Digital Sky Survey allow us to begin to construct a three
dimensional picture of the universe to test homogeneity directly. CMB fluctuation mea-
surements can constrain inhomogeneous models as well. Moreover, we can always fall
back upon the Cosmological Principle, which provides a strong theoretical expectation
that the isotropy observed about us can be interpreted as about a random location and
therefore enforces global homogeneity. Ellis et al. [12] have quantified the extent to
which this could break down and shown that formally isotropy about any three points
leads to homogeneity.

A homogeneous and isotropic universe is described within general relativity by the



Robertson-Walker metric. This contains only two parameters – a function a
�
t � and a

constant k – describing respectively the scale evolution or dynamics, and the spatial
curvature. CMB measurements have further put tight constraints on the spatial curvature,
restricting its characteristic scale today to be of order ten times the horizon scale, i.e. its
effective energy density is at most of order 1% of the total energy density.

Thus for the rest of this paper we adopt the Robertson-Walker metric with flat spatial
sections, k � 0:

ds2 ��� dt2 � a2 � t ��� dr2 � r2 � dθ2 � sin2 θdφ2 ����� (2)

We will also find it convenient sometimes to use conformal time dη � dt � a.
Type Ia supernovae, or any standardizable candles (sources with known luminosity),

are excellently suited to map the expansion history a
�
t � since there exists a direct relation

between the observed distance-redshift relation d
�
z � and the theoretical a

�
t � . The scale

factor a trivially translates into the observable redshift z of the source by a �
�
1 � z ��� 1.

That is, the expansion of spacetime directly stretches the wavelengths of the emitted
light. On the other hand, that light was emitted a finite time ago since it had to traverse
a certain distance d from the supernova to the observer. The received energy flux from
the supernova obeys the (relativistic) inverse square law, so the distance can be derived
from the observed flux by relating it to the known emitted flux. Via the speed of light the
distance is translated into a “lookback time” t. Thus one can proceed very simply from
observables d

�
z � to the expansion a

�
t � .

Mathematically, things are almost as simple. The relation between the scale factor and
redshift holds for any “quiet” universe where the light from a source moving at velocities
slow compared to the Hubble velocity (which is near unity for the distant sources used)
propagates without interaction in an adiabatically evolving background. The distance
used is the luminosity distance dL, which is related to the coordinate distance appearing
in the metric (2) by dL �

�
1 � z � r. All that remains is to find r

�
z � .

The form of r
�
z � comes from light following null geodesics, ds � 0. Thus dr � dt � a �

dη and

r
�
z � � η

�
z � �

� 1

ae

da � � a2H � �
� z

0
dz � � H � z � � � (3)

where the Hubble parameter (a function now, not a single number) is H � ȧ � a and
ae � 1 � � 1 � z � is the scale factor at the time of emission, i.e. when the supernova
exploded. This is the kinematical result, following purely from the geometry. To evaluate
the function we need to introduce dynamics: equations of motion derived from the
gravitation theory.

In general relativity these are known as the Friedmann equations and the relevant one
relating the Hubble parameter to the matter and energy contents of the flat universe is

H2 �
�
8π � 3 � ρ � (4)

The conservation condition of each (noninteracting) component is

ρ̇ � ρ � � 3H
�
1 � p � ρ �
	 � 3H � 1 � w

�
z ��� � (5)

where the energy density is ρ, the pressure p, and the equation of state (EOS) of
each component is defined by w � p � ρ. Ordinary nonrelativistic matter has w � 0; a



FIGURE 1. Overall expansion histories of expanding universes are sorted into classes: 1) a bounce
model, 2) a loitering Eddington-Lemaître model, 3) an open model, 4) a critical, Einstein-de Sitter model,
5) a closed model.

cosmological constant has w � � 1. We explicitly allow the possibility that w evolves.
The total density and pressure are just the sum of the individual components.

Once one has H
�
z � one can map out the expansion history a

�
t � by

t
�
a � �

� 1

a
da � � � a � H � �

� z

0
dz � � � � 1 � z � � H � z � ��� � (6)

The gross behavior of the scale factor over the entire age of the universe is illustrated in
Figure 1. One can classify expanding cosmologies into open, closed, and critical cases,
and those which possessed a Big Bang vs. bounce models. To set the stage by adding one
level of detail at a time, we are next interested in discrimination between models which
have less extreme asymptotic behaviors. A blowup of the past history of simple models
appears in Figure 2. Note that the lookback time is zero at z � 0 (a � 1). The main
focus of this paper though is a much finer discrimination, between models distinguished
by small differences in their components. This is probed through the recent expansion
history.

3. SNAP CAPABILITIES

The distance-redshift relation can map out the expansion history. From the ability of
supernovae, or other probes, to observe r

�
z � one can fit and constrain ρ and w

�
z � of each

component. To investigate the dark energy and distinguish between classes of physics
models we need to probe the expansion back into the deceleration epoch, indeed over a
redshift baseline reaching z � 1 � 5 (see Fig. 3; [13, 14]). SNAP [11] is a simple, dedicated



FIGURE 2. A more refined picture of the expansion history shows the differences between matter
dominated (flat, Einstein-de Sitter), empty (Ω � 0, Milne), cosmological constant dominated (de Sitter),
and presumably our universe (solid line): an accelerating model with both matter and dark energy.

experiment specifically designed to map the distance-redshift relation out to z � 1 � 7 with
high precision and tight control of systematic errors.

FIGURE 3. Degeneracies due to the dark energy model and the cosmological model cannot be resolved
at low redshifts. In this differential magnitude-redshift diagram the three parameters to be determined
are varied two at a time. Only at z � 1 � 7 do these very different physics models exceed 0.02 mag
discrimination. From [14].

These data can determine the cosmological parameters with high precision: mass
density Ωm to

�
0 � 01, vacuum energy density ΩΛ and curvature Ωk to

�
0 � 03, and the



dark energy equation of state w to
�

0 � 05 and its time variation w � � dw � dz to
�

0 � 3. This
time variation is a crucial distinguishing feature, not only for ruling out a cosmological
constant explanation, but for guidance on the proper class of high energy physics theory
to pursue. In addition, wide area weak gravitational lensing studies with SNAP will map
the distribution of dark matter in the universe and teach us about the evolution of the
nonlinear mass power spectrum.

The SNAP mission concept is a 2.0 meter space telescope with a nearly one square
degree field of view. A half billion pixel, wide field imaging system comprises 36 large
format new technology CCD’s and 36 HgCdTe infrared detectors. Both the imager and
a low resolution (R � 100) spectrograph cover the wavelength range 3500 - 17000 Å,
allowing detailed characterization of Type Ia supernovae out to z � 1 � 7.

As a space experiment SNAP will be able to study supernovae over a much larger
range of redshifts than has been possible with the current ground-based measurements
– over a wide wavelength range unhindered by the Earth’s atmosphere and with much
higher precision and accuracy. Many of these systematics-bounding measurements are
only achievable in a space environment with low sky noise and a very small and stable
point spread function (critical for lensing as well). Unlike other cosmological probes,
supernova studies have progressed to the point that a detailed catalog of known and pos-
sible systematic uncertainties has been compiled – and, more importantly, approaches
have been developed to constrain each one.

An array of data (e.g. supernova risetime, early detection to eliminate Malmquist bias,
lightcurve peak-to-tail ratio, identification of the Type Ia-defining Si II spectral feature,
separation of supernova light from host galaxy light, and identification of host galaxy
morphology, etc.) makes it possible to study each individual supernova and measure
enough of its physical properties to recognize deviations from standard brightness sub-
types. For example, an approach to the problem of possible supernova evolution uses the
rich stream of information that an expanding supernova atmosphere sends us in the form
of its spectrum. A series of measurements will be constructed for each supernova that
define systematics-bounding subsets of the Type Ia category. Only the change in bright-
ness as a function of the parameters classifying a subtype is needed, not any intrinsic
brightness. By matching like to like among the supernova subtypes, we can construct
independent Hubble diagrams for each, which when compared bound systematic uncer-
tainties at the targeted level of 0.02 magnitudes.

With a prearranged photometric observing program one obtains a uniform, standard-
ized, calibrated dataset for each supernova, allowing for the first time comprehensive
comparisons across complete sets of supernovae. The observing requirements also yield
data ideal as survey images, and one automatically obtains host galaxy luminosity, col-
ors, morphology, and type – a rich resource 9000 times larger than the Hubble Deep
Field and somewhat deeper. Thus SNAP will map the distance-redshift relation and
much more.



4. MODELING THE DYNAMICS

A fly in the theoretical ointment is that the measured distance r
�
z � is related to, but is

not, the desired history relation a
�
t � . So we need to translate r

�
z � into a

�
t � ; this requires

an intermediate step of obtaining H
�
z � . We can do this either directly or through the

cosmology parameters ρ and w
�
z � . The direct method involves a derivative of r

�
z � , so

noisy data can introduce difficulties [15, 16]. We examine this approach further in §4.3.
First we discuss the reconstruction of H

�
z � from the fit of the cosmological parameters

to the observations.
Observational evidence for accelerated expansion informs us that (within the dark

energy picture; cf. §4.5) there must be further cosmological parameters, describing
another component with a strongly negative EOS.

Assuming that just these two components, matter and another with EOS w
�
z � , control

the dynamics during the epoch of interest, we obtain a solution for H
�
z � and hence r

�
z �

by combining equations (3)-(5):

H0r
�
z � �

� z

0
dz �

�
Ωm
�
1 � z � � 3 � � 1 � Ωm � e � 3 � ln � 1 � z ���

0 d ln � 1 � z � �
	�� 1 � w � z � �	���� � 1 � 2
� (7)

where Ωm is the dimensionless matter density 8πρm �
�
3H2

0 � and H0 is the Hubble con-
stant – the present value of the Hubble parameter. Equation (6) can then be used to obtain
a
�
t � .
The EOS w

�
z � is derived from the Lagrangian for that component, i.e. the particle

physics enters here. One could solve the scalar field equation for a particular model to
find w

�
z � but then one does not obtain a model independent parameter space in which to

compare models. For generality of treatment, various parametrizations of w
�
z � are used.

We discuss a standard form next and a new parametrization in §4.2.

4.1. Linear w � z �
The conventional first order expansion to the EOS, enlarging the phase space to

incorporate the critical property of time variation in the EOS, is w
�
z � � w0

� w1z. In
this case the exponential in (7) resolves to

�
1 � z � 3 � 1 � w0 � w1 	 e3w1z. Figure 4 illustrates the

effect of changing the cosmological parameters, one at a time, on the expansion history.
An important point is the presence of correlation between the parameters Ωm, w0,

w1 (see, e.g., [17]) which must be treated properly if more than one is allowed to vary
(which is of course the general case). Figure 5 shows the reconstructed expansion history
for a simulation of the future SNAP experiment. Despite it being able to determine
each parameter individually to high precision, e.g. Ωm to 0.03, w0 to 0.05, w1 to 0.3
(each marginalized over others), the correlations among them relax the tightness of the
constraint SNAP would place on the expansion history. This is unavoidable (but see
§4.4).



FIGURE 4. Precision experiments are necessary to differentiate the expansion histories of models with
different densities and equations of state. The central curve is the history of a flat Ωm � 0 � 3 model with
cosmological constant. The red dashed curves vary the matter density by � 0 � 05, the blue dotted ones vary
the equation of state of dark energy by � 0 � 2, and the green long dashed curves put in a time variation of
the dark energy EOS, dw � dz ��� 0 � 5.

4.2. A new parametrization of the dark energy

Mapping the expansion history out to redshifts z � 1, beyond the deceleration-
acceleration transition represents a major advance in our cosmological knowledge. But
high redshift does introduce complications in the parametrization of dark energy. In or-
der to draw model independent constraints, we had parametrized the dark energy EOS
linearly in redshift: w

�
z � � w0

� w1z. This clearly grows increasingly problematic at
redshifts z � 1. However exact solutions for the EOS from the scalar field equations of
motion do not allow us to make model independent statements.

Corasaniti and Copeland [18] suggest an alternate parametrization in terms of a 7-
dimensional phase space: the value of the EOS today, w0, the values deep in the matter
(radiation) dominated tracker regime, wm (wr), the scale factors acm (acr) at the time the
field leaves the tracking behaviors, and the widths ∆m (∆r) of those transitions in Hubble
units. They find success in a particular functional approximation with scale factor,
obtaining the EOS w

�
z � to better than 5% back to the last scattering surface for a range of

models that display tracker behavior (where the field is in a slow roll regime that keeps
the EOS nearly constant, determined by the EOS of the background component). Indeed
they extend this function back into the radiation dominated epoch as well. While this
only applies to dark energy field theories that have a slow roll regime, within that fairly
varied class (e.g. potentials with inverse power laws, double exponentials, supergravity
inspired models, etc.) it provides a model independent method of characterizing the
behavior.

Such generality, while impressive, is somewhat unwieldy. For our present purposes



FIGURE 5. The constraints that supernova mapping of the expansion history through the magnitude-
redshift relation provide. SNAP limits represent a generational advance in understanding the recent history
of the universe.

we can make two simplifications. First, since we aim only to trace the expansion history
back to the matter dominated epoch (for now at least), I simplify the phase space to four
dimensions and obtain a fitting function for w

�
a � as

w
�
a � � F � G

�
1 � e � � a � ac 	 � ∆ � � 1

(8)

F � w0 �
�
wm � w0 �

�
1 � e � ac � ∆ � � e � 1 � ∆ � 1 � � 1 (9)

G �
�
wm � w0 �

�
1 � e � ac � ∆ � � e � 1 � ∆ � 1 � � 1 �

�
1 � e � � 1 � ac 	 � ∆ � � (10)

Out to the last scattering surface at z � 1100 this is as accurate as the original Corasaniti
& Copeland expression. The time variation of the EOS, evaluated at z � 0, is

w � 	 � dw � dz � 0 �
�
wm � w0 � ∆ � 1 � e1 � ∆ � 1 � � 1 �

�
1 � eac � ∆ � � 1 � e � � 1 � ac 	 � ∆ � � 1 � (11)

But analyzing the constraints of SNAP or other cosmological probes on a 4-
dimensional dark energy parameter space, in addition to other parameters such as Ωm
and the supernova intrinsic magnitude, is too broad for useful conclusions. Instead I
make a second simplification by using a fitting function

w
�
a � � w0

� wa
�
1 � a � (12)

� w0
� waz � � 1 � z � � (13)

This is astonishingly successful.
This new parametrization of dark energy models has several advantages: 1) a man-

ageable 2-dimensional phase space, the same size as the old w0 � w1 parametrization, 2)



reduction to the old linear redshift behavior at low redshift, 3) well behaved, bounded
behavior for high redshift, 4) high accuracy in reconstructing many scalar field equations
of state and the resulting distance-redshift relations, 5) good sensitivity to observational
data, 6) simple physical interpretation. Particularly important is its virtue of keeping
w
�
a � of order unity even for large redshifts; this is essential when analyzing cosmic mi-

crowave background (CMB) constraints (to z � 1100) on dark energy. This contrasts
with the linear redshift expansion from the previous section.

Beyond the bounded behavior, though, the new parametrization is also more accurate
than the old one. For example, in comparison to the exact solution for the supergravity
inspired SUGRA model [19] it is accurate in matching w

�
z � to -2%, 3% at z � 0 � 5, 1.7

vs. 6%, -27% for the linear z approximation (the constants w1, wa are here chosen to fit
at z � 1). Most remarkably, it reconstructs the distance-redshift behavior of the SUGRA
model to 0.2% over the entire range out to the last scattering surface (z � 1100). The
physical interpretation of the parametrization is straightforward: w0 is the present value
of the EOS and wa is a measure of the time variation, which can be chosen to give the
correct value of w

�
z � 1 � . For the cosmological constant, of course wa � 0.

Figure 4 shows lines of constant wa � �
1 (dw � dz � 0 � 5) in the expansion evolution

a
�
t � . Note that for w

�
a � � w0

� wa
�
1 � a � the dark energy density exponential in (7)

resolves to a � 3 � 1 � w0 � wa 	 e � 3wa � 1 � a 	 .
Also note that dw � d ln

�
1 � z � �

z � 1 � wa � 2; one might consider this quantity a natural
measure of time variation (it is directly related to the scalar field potential slow roll factor
V � � V ) and z � 1 a region where the scalar field is most likely to be evolving as the epoch
of matter domination begins to change over to dark energy domination.

SNAP will be able to determine wa to better than
�

0 � 55 (one expects roughly
wa � 2w1), with use of a prior on Ωm of 0.03, or to better than 0.3 on incorporating
data from the Planck CMB experiment [20]. For the advantages of combining super-
nova and CMB data see [21]. The CMB information can be folded in naturally in this
parametrization, without imposing artificial cutoffs or locally approximating the likeli-
hood surface as required for SNe plus a CMB prior in the w1 parametrization. In fact,
the new parametrization is even more promising since the sensitivity of the SNAP de-
terminations increases for w0 more positive than � 1 or for positive wa (see, e.g., [15]):
the values quoted above were for a fiducial cosmological constant model. For example,
SUGRA predicts wa � 0 � 58 and SNAP would put error bars of σ

�
wa � � 0 � 25 on that;

this would demonstrate time variation of the EOS at the 95% confidence level. Incorpo-
ration of a Planck prior can improve this to σ

�
dw � d ln

�
1 � z � �

z � 1 � � 0 � 1, i.e. the � 99%
confidence level.

4.3. Using H � z � directly

The direct reconstruction method of going from observations r
�
z � to H

�
z � , and then to

a
�
t � , without a parametrization in terms of w

�
z � can be attempted. This has the virtue of

model semi-independence, allowing incorporation of additional errors, e.g. systematics,
outside the distance relation. But since it can only be carried out in a local perturbative
manner (à la the Fisher matrix) it does depend on a known fiducial model. But this is a



model merely for H
�
z � , not for the details w

�
z � , i.e. it is a nonparametric reconstruction,

and it can give a feel for the effect of measurement errors.
Here we relate the derived uncertainties about a fiducial behavior H

�
z � to the obser-

vational errors. First we must realize that the supernovae observations are phrased in
terms of magnitudes, or logarithmic fluxes: m

�
z � � 5log � � 1 � z � r � z � � , so one really is

interested in σH � z 	 as a function of the measurement errors σm � z 	 . However, a one to one
mapping between these quantities at a single redshift does not exist, since m

�
z � involves

an integral over the Hubble parameter (see Eq. 3). Instead,

σH � z 	 � H
�
z � ln10

5

�
σm � z 	 � dσm

dz
Hη � � (14)

i.e. the parameter error involves both the magnitude error at that redshift and its deriva-
tive. Recall η

�
z � ��� z

0 dz � � H is the comoving distance or conformal time.
For a fiducial model H

�
z � one can translate errors in the magnitude data into uncer-

tainties on the Hubble parameter, and then further to the a
�
t � relation. This is convenient

for taking into account the realistic situation of not only uncertainty in the cosmology
parameters but in the observational data. For example, one can analyze the effect of sta-
tistical and systematic magnitude errors on the mapping of the expansion history. To
carry the error progragation one step further, to a

�
t � , we must integrate the Hubble pa-

rameter we found from differentiating the data in order to obtain the lookback time. The
resulting error in the time t

�
a � is now nonlocal in redshift.

σt � z 	 � σm � z 	 ln10
5

�
1 � z � � 1η � ln10

5

� z

0
dz � � 1 � z � � � 2η

�
z � � σm � z � 	 (15)

In the next section we will see a better solution.

4.4. Conformal Time History

One method of incorporating the advantages of both approaches – the generality
of parametrization and the directness of reconstruction – is to alter slightly our view
of the expansion evolution. Instead of a

�
t � , consider the conformal time a

�
η � . From

d �
�
1 � z � η one sees that one requires no foreknowledge or local approximation to

obtain the scale factor-conformal time relation.
We have

m
�
z � � 5log � � 1 � z � η � z ��� � (16)

η
�
a � � a � 10m � z 	 � 5 � η0

�
a ��� 10dm � z 	 � 5 (17)

where in the last equality we explicitly show how the conformal time-scale factor
relation changes in the presence of a shift or errors in the observed magnitude. This
error propagation then reduces simply to ση � z 	 � σm � z 	 � ln10 � 5 � η. Thus

ση

η � σm
ln10

5
�
�
1 � 2 � σm � (18)



FIGURE 6. The expansion history is plotted in conformal time in the left figure. SNAP constraints
appear very tight when viewed in conformal time because this is most closely related to the observations.
The right figure shows the conformal horizon scale – the logarithmic derivative of the left figure. The part
with negative slope allows comoving wavelengths to expand outside the horizon, or alternately represents
aH � ȧ increasing, i.e. ä � 0 – the signature of inflation or acceleration. The dashed blue lines show that
SNAP will map the accelerating phase, the transition, and into the matter dominated, decelerating phase
of the past universe.

All quantities are at a single redshift. Only in the case where σm is constant in redshift
does one obtain similar precision on the other mapping parameters: then σt � t � σH � H �
ση � η.

Mapping of the expansion history in conformal time is shown in Figure 6. Note that
the reconstruction is much tighter due to the straightforward translation from observa-
tions. The 1% distance measurement error (σm � 0 � 02) given by SNAP’s limiting sys-
tematics becomes a 1% error in a

�
η � . Moreover there is no need for the indirect mapping

method of §4.1, which led to a � 2% error in a
�
t � due to the parameter correlations men-

tioned in that section.
Figure 6 also shows the logarithmic derivative

dη
d lna � a

dt
ada �

�
ȧ � � 1 �

�
aH � � 1 � (19)

interpreted respectively as the proper time evolution of the scale factor or the conformal
horizon scale

�
aH � � 1. Just as in inflation a positive slope denotes decelerating expan-

sion, ä � 0 and comoving wavelengths (e.g. of density perturbations) enter the horizon;
v.v. for a negative slope: an accelerating universe or inflation. The dashed lines show
that SNAP can probe both epochs and map the transition between them.



4.5. Beyond Dark Energy

Mapping the physical time evolution of the scale factor relies on translating the
observations into the behavior of the Hubble parameter H

�
z � . This translation might

proceed via a parametrization of the physics of the acceleration, e.g. the dark energy
properties as in §4. We also might want to study the density evolution and its transition
from the earlier matter dominated epoch to the present [22]. In §2 we adopted general
relativity to obtain the Friedmann equation (4) to provide the foundation for these.

But ideally we would like to use the data to test the Friedmann equations of general
relativity or alternate explanations for the acceleration besides dark energy. The super-
nova distance-redshift data allow such investigation of the fundamental framework by
substituting the altered Hubble evolution H

�
z � into Eq. (3). This enables constraints to

be placed on, e.g., higher dimension theories, Chaplygin gas, etc. See Linder [22] for
examples.

5. COMPLEMENTARY PROBES

In addition to the mapping of the expansion history through the distance-redshift relation
by Type Ia supernovae or possibly other methods in the future, one can constrain the
a
�
t � curve in other ways. The total age of the universe places the “foot” of the a

�
t �

curve on the a � 0 axis in the lower right of the plots. “Shooting upward” with a known
slope (a � t1 � 2 in the early radiation dominated epoch) provides a constraint on the a

�
t �

relation. Knox et al. [23] have shown that the location of the acoustic peaks in the cosmic
microwave background radiation power spectrum is nearly degenerate with the age in a
flat universe not too different from ours. These data place a constraint of t0 � 14 � 0 �

0 � 5
billion years. The bounds in terms of H0t0 are slightly weaker because of increased
model dependence: 0 � 93

�
0 � 06, 1 � 00

�
0 � 07 from supernovae [24, 25].

The t, as opposed to the H0t, axis would thus have a stronger footpoint for the a
�
t �

curve to aim toward. But conversely, the slope of a
�
t � near a � 1 changes from unity on

a H0t plot to the Hubble constant H0 on a t plot, adding another uncertainty. A direct
bound on H0 constrains the slope of the a

�
t � curve at a � 1 in the upper right of such

plots. The Hubble Space Telescope Key Project [26] quotes H0 � 72
�

8 km/s/Mpc. In
either the a � t or a � H0t plane constraints on present slope and total age together act to
force the expansion history into a narrow corridor, shooting back in time subject to the
boundary conditions.

6. CONCLUSION

The geometry, dynamics, and composition of the universe are intertwined through the
theory of gravitation governing the expansion of the universe. By precision mapping
of the recent expansion history we can hope to learn about all of these. The brightest
hope for this in the near future is the next generation of distance-redshift measurements
through Type Ia supernovae that will reach out to z � 1 � 7. This represents 70% of the



age of the universe and spans the current accleration epoch back to the matter dominated
deceleration epoch when most large scale structure formed.

Just as the thermal history of the early universe taught us much about cosmology, as-
trophysics, and particle physics, so does the recent expansion history have the potential
to greatly extend our physical understanding. With the new parametrization of dark en-
ergy suggested here, one can study the effects of a time varying equation of state com-
ponent back to the decoupling epoch of the cosmic microwave background radiation.
But even beyond dark energy, exploring the expansion history provides us cosmological
information in a model independent way, allowing us to examine many new physical
ideas. From two numbers we have progressed to mapping the entire dynamical function
a
�
t � , on the brink of a deeper understanding of the dynamics of the universe.
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